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Introduction to Biosignals
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Signals - a general introduction

∙ A signal 𝑦 is an information-bearing quantity that
varies over an independent variable and can be
represented as a function 𝑥 :

𝑦 = 𝑥(𝑡) 𝑥 : R → C with 𝑦 ∈ C, 𝑡 ∈ R

∙ In biosignal research, the independent variable
represents time 𝑡 using the physical unit seconds.

∙ Due to convention, we might call the depended
variables output, independent variables input, and
the number of independent variables dimensions.
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Deterministic vs. stochastic signals

∙ For deterministic signals there is no
uncertainty regarding their value at a
given point in time. They can be
described using equations.

∙ The exact values of stochastic signals
for a point in time cannot be
predicted and they can only be
described statistically.
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→ Biosignals oftentimes share properties of both types.
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Periodic vs. aperiodic signals

∙ A signal is called periodic, if there exists a
fundamental period 𝑇0 such that
𝑥(𝑡) = 𝑥(𝑡 +𝑚𝑇0), for 𝑚 ∈.

∙ A signal is called aperiodic, if no 𝑇0 exists:

∙ Aperiodic signals can still be quasi-periodic,
if they repeat with small errors

→ Many biosignals are quasi-periodic
∙ If aperiodic signals do not repeat at all,

they are transient.
→ Noise in biosignals, e.g. due to motion of

the subject.
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Periodicity

∙ Sine and cosine functions are prominent examples of periodic signals.

∙ The reciprocal of the fundamental period 𝑇0 is the fundamental frequency
𝐹0 = 1/𝑇0, measured in unit Hertz [Hz].

Example

∙ A heart beats with approx. 1 Hz (60 beats-per-minute) in a calm person.

∙ The audible frequency range lies within 20− 20, 000 Hz.

∙ Red light is an electromagnetic wave with 4 * 10
14 Hz.
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Continuous-time vs. discrete-time signals

∙ Most discrete signals are acquired by sampling a continuous signal, i.e.
𝑥 [𝑛] = 𝑥(𝑛𝑇0), for 𝑛 ∈.

∙ The number of samples per second is called the sampling frequency.

Example

A digital song (e.g. a .wav Ąle) is a discrete-time signal 𝑥 [𝑡]. A recorder and
microphones were used to store a continuous-time audio wave 𝑥(𝑡) in discrete steps
(e.g. 𝑇0 = 1/44.1 kHz).

July 11, 2024 Georg-August-Universität Göttingen 8



Department of Medical Informatics, University Medical Center Göttingen

−30 −20 −10 0 10 20 30

−1

−0.5

0

0.5

1

𝑡

𝑥
(𝑡
)

Continuous-time signal

−30 −20 −10 0 10 20 30

−1

−0.5

0

0.5

1

𝑡

𝑥
[𝑡
]

Discrete-time signal

July 11, 2024 Georg-August-Universität Göttingen 9



Department of Medical Informatics, University Medical Center Göttingen

Biosignals - Attempt of a deĄnition

DeĄnition

Biosignals are signals, that arise from physiological processes in living beings, and
that can be continually measured and monitored. Biosignals stem from electrical,
mechanical, and chemical changes in the body.

Discuss: Which effects can you measure as a biosigal?

Blood pressure ?

Body temperature ?

Insulin levels ?

Electrical brain activity ?

Blood iron levels ?

Respiration ?
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Biosignals - Attempt of a deĄnition

DeĄnition

Biosignals are signals, that arise from physiological processes in living beings, and
that can be continuously measured and monitored. Biosignals stem from electrical,
mechanical, and chemical changes in the body.

Discuss: Which of the given examples is a biosignal?

Blood pressure X

Body temperature 50/50

Insulin levels X

Electrical brain activity X

Blood iron levels X

Respiration X
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Nomenclature

Important note

We need to differentiate between:

∙ The physiological entity (e.g. cardiac conduction system)

∙ The measurement concept (e.g. electrocardiography)

∙ The measurement device (e.g. patient monitor)

∙ The measured signal (e.g. electrocardiogram)

Example

We can measure the heart rate frequency, i.e. how often the heart beats, using different
modalities: One way is to use the ECG to measure the electrical activity on the chest, another
way is to measure the blood Ćow in the Ąnger via plethysmography.
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The human heart

∙ The heart is a highly specialized organ located
in the middle compartment of the chest with a
mass of approximately 250− 350g in an adult
and consists mainly of muscle tissue, called
myocardium.

∙ The heart is divided in a left and right half with
both consisting of an upper and a lower
chamber, called atrium and ventricle,
respectively. By Wapcaplet, Yaddah - Own work, CC BY-SA

3.0, https://commons.wikimedia.org/w/index.php?
curid=830246
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Electrocardiography

∙ Electrocardiography (ECG) is a non-invasive
measurement of the heartŠs electrical activity

∙ 10 electrodes are are attached to the skin and measure

electrical potential differences:

∙ 6 chest electrodes: 𝑉 1 · · · 𝑉 6

∙ 4 limb electrodes: Right/left arm/leg

∙ From these electrodes, 12 ŤleadsŤ are computed:

∙ 6 chest leads: 𝑉 1 · · · 𝑉 6 (unipolar)
∙ Einthoven:a 𝐼: RA-LA, 𝐼𝐼: RA-LL, 𝐼𝐼𝐼: LA-LL
∙ Goldberger: aVR: RA/(LA+LB), aVL:

LA/(RA+RB), aVF: LB/(LA+RA)

a
W. Einthoven received the Nobel Prize in Physiology or Medicine in 1924

for inventing the Ąrst practical ECG device.

By
Madhero88 - Own work, Public Domain,
https://commons.wikimedia.org/w/index.php?
curid=6098303
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Electrocardiography

∙ The ECG signal of a healthy heartbeat follows
a very speciĄc pattern P-QRS-T:

∙ P: atrial depolarisation
∙ QRS: depolarization of the ventricles
∙ T: repolarization of the ventricles

∙ Voltages are measured in units of [mV] and
origin from the depolarization and
repolarization of the myocardium.
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Electrocardiography irregularities

∙ The ECG enables the detection of a many heart-related conditions, e.g.

∙ Myocardial infarction: block in a artery leads to interruption of blood Ćow
∙ Bundle branch blocks: partial or complete interruptions of electrical impulses
∙ Arrhythmia: irregular rhythm of the heart beat.
∙ Bradycardia/Tachycardia: Abnormally low or high heart rate

Important note

Although the ECG has high diagnostic value, we always have to consider pitfalls:

∙ High degree of intra- and inter-subject variability.

∙ Measurement noise due to problems with the hardware (e.g. wrong cable setup)
or the subject (e.g. motion artifacts)
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Electrocardiography examples

Arrythmic ECG with left bundle branch block (LBBB, duration QRS > 120 ms in V5/V6). Heavy
noise due to weakly attached V3 / V4 electrodes + muscle noise.
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Electrocardiography examples

Myocardial infarct visible as ST elevation (V1-V3) + LBBB
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Sleep

∙ Sleep follows a typical
pattern over night

∙ Awake
∙ Rapid Eye Movement

(REM) Sleep
∙ Non-REM sleep

∙ N1-N2 Light sleep
∙ N3 Deep sleep

∙ This pattern is distorted in
patients suffering from sleep
disorders.

By RazerM at English Wikipedia, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=17745252
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Polysomnography

∙ For sleep disorder diagnosis, polysomnograms
are the gold standard which are acquired in
sleep labs

∙ The standard setup is depicted on the right
and includes, next to ECG:

∙ Respiratory signals
∙ Electroencephalography (EEG): electrical

activity of the brain
∙ Electrooculography (EOG): electrical activity of

the eyes
∙ Electromyography (EMG): muscle activity
∙ Pulse oximetry

By National Heart Lung and Blood Institute (NIH), Public Domain,
https://commons.wikimedia.org/w/index.php?curid=29590111
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Polysomnography

∙ Polyosomnography is acquired from patients with suspected sleep abnormalities,
e.g. sleep apnea (repetitive pauses in breathing), narcolepsy (high day
drowsiness), or periodic limb movement.

∙ Data is acquired over a whole night and annotated by humans on the next data
in windows of 30 seconds based on the American Academy of Sleep Medicine
(AASM) reference manual.

Stage Spindles Alpha/Theta Delta EMG REM Slow EM height
W - +++ Spikes +++ +++ +++
N1 - + - ++ - +++
N2 +++ - + + - +
N3 ++ - +++ - - -
R - + - - +++ +++
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PSG 30s window
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Introduction to XAI
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eXplainable AI (XAI)

Discussion

1. Why do we need Explainable AI?

2. How does Explainable AI work?
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Why do we need Explainable AI?
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Why do we need Explainable AI?

Causal Effect

Correlation

Noise
Bi

as

Big Data

Artificial Itelligence

Inspired by: @redpenblackpen
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Why do we need Explainable AI?

July 11, 2024 Georg-August-Universität Göttingen 27



Department of Medical Informatics, University Medical Center Göttingen

Why do we need Explainable AI?
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Importance of XAI for Stakeholders

Data Scientists

∙ Why is XAI important
for Data Scientists?

Consumers

∙ Why is XAI important
for Consumers?

Regulators

∙ Why is XAI important
for Regulators?
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Importance of XAI for Data Scientists

July 11, 2024 Georg-August-Universität Göttingen 30



Department of Medical Informatics, University Medical Center Göttingen

Importance of XAI for Data Scientists

Douglas Heaven, Why deep-learning AIs are so easy to fool. Nature NEWS FEATURE. 09 October 2019
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Importance of XAI for Stakeholders

Data Scientists

∙ Increase
Understanding

∙ Improve Performance

∙ Create Better
Algorithms

∙ Produce Better
Models

Consumers

∙ Why is XAI important
for Consumers?

Regulators

∙ Why is XAI important
for Regulators?
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Importance of XAI for Stakeholders

Data Scientists

∙ Increase Understanding

∙ Improve Performance

∙ Create Better
Algorithms

∙ Produce Better Models

Consumers

∙ Why is XAI important
for Consumers?

Regulators

∙ Why is XAI important
for Regulators?
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Importance of XAI for Consumers

Fever Headache Heart attack
?
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Importance of XAI for Consumers

Fever Headache Heart attack
?

Heart attack
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Importance of XAI for Consumers

Why should 
I trust the 

prediction?Fever Headache Heart attack
?

Heart attack
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Importance of XAI for Consumers

Why should 
I trust the 

prediction?Fever Headache Heart attack
?

Heart attack

What are 
the underlying 
causal effects?
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Importance of XAI for Medical Applications
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Importance of XAI for Medical Applications
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Importance of XAI for Medical Applications
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Importance of XAI for Medical Applications
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Importance of XAI for Stakeholders

Data Scientists

∙ Increase Understanding

∙ Improve Performance

∙ Create Better
Algorithms

∙ Produce Better Models

Consumers

∙ Increase Trust

∙ Bias and
Transparency

∙ Understand Impact

∙ Reports and Analysis

Regulators

∙ Why is XAI important
for Regulators?
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Importance of XAI for Stakeholders

Data Scientists

∙ Increase Understanding

∙ Improve Performance

∙ Create Better
Algorithms

∙ Produce Better Models

Consumers

∙ Increase Trust

∙ Bias and Transparency

∙ Understand Impact

∙ Reports and Analysis

Regulators

∙ Why is XAI important
for Regulators?
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AI in Critical Applications
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AI in Critical Applications
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AI in Critical Applications

Lee, June-Goo, et al. "Deep learning in medical imaging: general overview." Korean 
journal of radiology 18.4 (2017): 570-584.

Legal requirement for:

Algorithm / Model need to support 
the possibility to retrace why the 
model made certain decisions.

https://digital-strategy.ec.europa.eu/en/policies/regulatory-framework-ai

EU
Artificial 

Intelligence 
Act

July 11, 2024 Georg-August-Universität Göttingen 46



Department of Medical Informatics, University Medical Center Göttingen

AI in Critical Applications

High-risk AI systems will be subject to strict
obligations before they can be put on the market:

∙ adequate risk assessment and mitigation systems

∙ high-quality datasets feeding the system to minimize risks and discriminatory
outcomes

∙ logging of activity to ensure traceability of results

∙ detailed documentation providing all information necessary on the system and its
purpose for authorities to assess its compliance

∙ clear and adequate information to the user

∙ appropriate human oversight measures to minimize risk

∙ high level of robustness, security, and accuracy

https://digital-strategy.ec.europa.eu/en/policies/regulatory-framework-ai
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Importance of XAI for Stakeholders

Data Scientists

∙ Increase Understanding

∙ Improve Performance

∙ Create Better
Algorithms

∙ Produce Better Models

Consumers

∙ Increase Trust

∙ Bias and Transparency

∙ Understand Impact

∙ Reports and Analysis

Regulators

∙ Increase Trust

∙ Bias and
Transparency

∙ Compliance

∙ Reports
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Importance of XAI

Summary

∙ Explain predictions to support the decision-making process

∙ Debug the unexpected behavior of a model

∙ ReĄne modeling and data collection process

∙ VeriĄcation of model behavior

∙ Legal aspects

∙ Retain human control in decision-making

∙ Establish Trust in the decision process for stakeholders
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What makes a good explanation?

Explanations must be:

∙ Complete

∙ Accurate

∙ Meaningful

∙ Consistent
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Taxonomy of Interpretable and Explainable AI

Interpretable and Explainable AI 
Methods

Local
Explainability of 

individual 
predictions

Post-hoc
Black-box Models
Unexplainable by 
design or opaque

Model 
Specific

Global
Aggregated, ranked 
contributions over 

entire model

Model 
Agnostic

Model 
Specific

Model 
Agnostic

Hybrid

Ante-hoc
Glass-box Models

Explainable by
design

Local
Explainability of 

individual 
predictions

Global
Aggregated, ranked 
contributions over 

entire model

Model 
Specific
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Taxonomy of Interpretable and Explainable AI

Interpretable and Explainable AI 
Methods

Local
Explainability of 

individual 
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Post-hoc
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Taxonomy of Interpretable and Explainable AI

Interpretable and Explainable AI 
Methods

Local
Explainability of 

individual 
predictions

Post-hoc
Black-box Models
Unexplainable by 
design or opaque

Model 
Specific

Global
Aggregated, ranked 
contributions over 

entire model

Model 
Agnostic

Model 
Specific
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Agnostic
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Glass-box Models
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Local
Explainability of 
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Interpretable AI
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Interpretable Ante-hoc XAI Methods

Ante-hoc

∙ Interpretable models = Explainable by design

∙ Importance calculation is directly embedded in the learning algorithm

∙ "glass-box" models that are ante-hoc interpretable
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Interpretable Ante-hoc XAI Methods

Advantages and Disadvantages

Importance calculation is directly embedded in the learning algorithm
Advantages:

∙ Better runtimes and less complexity

∙ Dependencies between data points are modeled

Disadvantages:

∙ Strongly depends on the learning algorithm used

∙ Model-speciĄc biases
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Interpretable Ante-hoc XAI Methods

Example

∙ Linear Methods
∙ Logistic Regression: Regression Coefficients
∙ (Grouped) Lasso: Penalization towards few features
∙ (Regularized) Linear Discriminant Analysis
∙ Linear SVM

∙ Non-Linear Methods
∙ Non-Linear Methods
∙ Decision Trees
∙ Random Forest
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Ante-hoc vs Post-hoc Methods

Interpretable and Explainable AI 
Methods

Local
Explainability of 

individual 
predictions

Post-hoc
Black-box Models
Unexplainable by 
design or opaque

Model 
Specific

Global
Aggregated, ranked 
contributions over 

entire model

Model 
Agnostic

Model 
Specific

Model 
Agnostic

Hybrid

Ante-hoc
Glass-box Models

Explainable by
design

Local
Explainability of 

individual 
predictions

Global
Aggregated, ranked 
contributions over 

entire model

Model 
Specific

Explainable AIInterpretable AI
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Ante-hoc vs Post-hoc Methods

Interpretable and Explainable AI 
Methods

Local
Explainability of 

individual 
predictions

Post-hoc
Black-box Models
Unexplainable by 
design or opaque

Model 
Specific

Global
Aggregated, ranked 
contributions over 

entire model

Model 
Agnostic

Model 
Specific

Model 
Agnostic

Hybrid

Ante-hoc
Glass-box Models

Explainable by
design

Local
Explainability of 

individual 
predictions

Global
Aggregated, ranked 
contributions over 

entire model

Model 
Specific

Todays Focus: Explainable AI
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Post-hoc XAI Methods

Post-hoc

∙ Interpreting Black-Box models

∙ Applying methods that analyze trained models

∙ Any model can be explained with XAI

∙ Often applied in imaging based on DL and black box models (Many XAI
Methods developed for imaging)
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Local vs. Global Explainability

Interpretable and Explainable AI 
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Local vs. Global Explainability
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Local Explainable AI

Local

∙ Interpretation of individual predictions or a small part of the modelŠs prediction
space

∙ ŞEasyŤ to understand

∙ Higher precision but lower recall understanding of model behavior

∙ Not guaranteed representative since they are calculated for single samples
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Model SpeciĄc vs. Model Agnostic XAI
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contributions over 

entire model

Model 
Specific
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Local Model SpeciĄc vs. Model Agnostic XA

Model SpeciĄc

It only works for speciĄc models due to deĄnition, e.g.

∙ Backpropagation-based methods

∙ Integrated Gradients

∙ SmoothGrad
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Local Model SpeciĄc vs. Model Agnostic XA

Model SpeciĄc

It only works for speciĄc models due to deĄnition, e.g.

∙ Backpropagation-based methods

∙ Integrated Gradients

∙ SmoothGrad

Model Agnostic

Portable across model deĄnitions, e.g.

∙ Pertubation-Based Methods

∙ Surrogate Methods, e.g. Local Interpretable Model-agnostic Explanations (LIME)

∙ Shapley values (SHAP)
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Global Explainable AI

Interpretable and Explainable AI 
Methods

Local
Explainability of 

individual 
predictions

Post-hoc
Black-box Models
Unexplainable by 
design or opaque

Model 
Specific

Global
Aggregated, ranked 
contributions over 

entire model

Model 
Agnostic

Model 
Specific

Model 
Agnostic

Hybrid

Ante-hoc
Glass-box Models

Explainable by
design

Local
Explainability of 

individual 
predictions

Global
Aggregated, ranked 
contributions over 

entire model

Model 
Specific
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Global Explainable AI

DeĄnition

∙ Aggregated, ranked contributions of input variables for the entire modelŠs prediction space

∙ Higher recall view of the entire model prediction space but lower precision due to
aggregation, e.g., averages

∙ Divide the whole input space by set of rules

Advantage:

∙ Are fully transparent and representative of the whole input space

Disadvantage:

∙ Can quickly be difficult to understand
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Global Model SpeciĄc vs. Model Agnostic XAI

Interpretable and Explainable AI 
Methods

Local
Explainability of 

individual 
predictions

Post-hoc
Black-box Models
Unexplainable by 
design or opaque

Model 
Specific

Global
Aggregated, ranked 
contributions over 

entire model

Model 
Agnostic

Model 
Specific

Model 
Agnostic

Hybrid

Ante-hoc
Glass-box Models

Explainable by
design

Local
Explainability of 

individual 
predictions

Global
Aggregated, ranked 
contributions over 

entire model

Model 
Specific
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Global Model SpeciĄc vs. Model Agnostic XAI

Model SpeciĄc

Only works for speciĄc models due to deĄnition,
e.g.

∙ Tree-based feature importance

∙ Testing with Concept Activation Vectors (TCAV)
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Global Model SpeciĄc vs. Model Agnostic XAI

Model SpeciĄc

Only works for speciĄc models due to deĄnition,
e.g.

∙ Tree-based feature importance

∙ Testing with Concept Activation Vectors (TCAV)

Model Agnostic

Portable across model deĄnitions, e.g.

∙ Permutation feature importance

∙ Partial Dependence Plots (PDP)
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Global Model SpeciĄc vs. Model Agnostic XAI

Model SpeciĄc

Only works for speciĄc models due to deĄnition,
e.g.

∙ Tree-based feature importance

∙ Testing with Concept Activation Vectors (TCAV)

Model Agnostic

Portable across model deĄnitions, e.g.

∙ Permutation feature importance

∙ Partial Dependence Plots (PDP)

Hybrid

Agreggate Local Explanations e.g.

∙ SHAP

∙ Integrated Gradient
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Model SpeciĄc vs. Model Agnostic XAI

Interpretable and Explainable AI 
Methods

Local
Explainability of 

individual 
predictions

Post-hoc
Black-box Models
Unexplainable by 
design or opaque

Model 
Specific

Global
Aggregated, ranked 
contributions over 

entire model

Model 
Agnostic

Model 
Specific

Model 
Agnostic

Hybrid

Ante-hoc
Glass-box Models

Explainable by
design

Local
Explainability of 

individual 
predictions

Global
Aggregated, ranked 
contributions over 

entire model

Model 
Specific

Todays Focus: 
Local Explainable AI
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Break (5min)
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XAI WorkĆow
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AI Models suited for Biosignals

∙ Deep Neural Networks

∙ Convolutional Neural Networks

∙ Recurrent Neural Networks

∙ Transformer Networks

∙ Graph Neural Networks
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Deep Neural Networks

Feed forward neural network. Image generated with Biorender.

∙ Able to learn complex
relationships in the data

∙ Only able to take
1D-Input → Data needs
to be Ćattened

∙ Loss of spatial
information
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Convolutional Neural Networks

Example of Convolutional Neural Network. Image generated with Biorender.

∙ Great for pattern
recognition
(waveforms, shapes,
and temporal
dynamics)

∙ Process data while
preserving spatial
and temporal
structures
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Recurrent Neural Networks

Example of Recurrent Neural Network. Image generated with Biorender.

∙ Capture
dependencies in
time-series data
effectively

∙ Especially Long
Short Term Memory
Networks (LSTMs)
can carry
information for long
periods of time
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Transformer Networks

∙ Ability to focus on speciĄc parts of
the signal that are more informative
for the task

∙ Can handle entire sequences at once

∙ Can process and relate distant points
in the sequence directly without
step-wise propagation

The Transformer architecture. Vaswani, Ashish, et al. "Attention is all you need."
Advances in neural information processing systems 30 (2017).
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Graph Neural Networks

Example of Graph Neural Network. Image generated with Biorender.

∙ Can model the complex
relationships and structures
within data represented as
graphs (e.g. brain
connectivity networks from
EEG)

∙ Can incorporate spatial
information about the nodes,
which is particularly useful
for biosignals recorded from
spatially distributed sensors
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Generating XAI Attributions

∙ Captum AI

∙ Backpropagation Based Methods

∙ Pertubation Based Methods

∙ Surrogate Methods
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Captum AI

Screenshot of thr Captum AI website: https://captum.ai/.
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Backpropagation Based Methods

∙ Track the gradients of the output (e.g., classiĄcation scores) with respect to
the input features through the whole network
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Backpropagation Based Methods

∙ Based on the intuition that if a small change in an input feature signiĄcantly
affects the output, that feature must be important for the decision-making
process

∙ Can sometimes produce misleading or difficult-to-interpret explanations,
especially in highly complex networks

∙ Examples: Input×Gradient, Integrated Gradients, LRP, GradCAM,
Deconvolution, Guided Backpropagation, and DeepLIFT

July 11, 2024 Georg-August-Universität Göttingen 84



Department of Medical Informatics, University Medical Center Göttingen

Pertubation Based Methods

Image from Ancona, Marco, et al. "Towards better understanding of gradient-based attribution methods for deep neural networks." arXiv preprint arXiv:1711.06104 (2017)

∙ Interpret the decisions by systematically altering (perturbing) the input data
and observing the impact on the modelŠs output
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Pertubation Based Methods

∙ They are not dependent on underlying model parameters

∙ Can be computationally intensive, especially for large datasets or complex
models

∙ The impact of perturbations can sometimes be difficult to interpret, especially
for interactions between features

∙ Examples: Occlusion, Feature Permutation, and Shapley Values
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Surrogate Methods

∙ Use a simpler model to emulate the predictions of a complex model across a
speciĄc input space or dataset

∙ By training the surrogate model to approximate the outputs of the original
model, one can analyze the surrogate model to gain insights into how the
original model makes decisions

∙ The interpretability of the surrogate model allows for the extraction of
human-understandable explanations, such as feature importance, decision rules,
or visualizations.

∙ Examples: LIME
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Break (5min)
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Visualizing Relevance Attributions
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Visualizing Relevance Attributions

∙ Challenges in visualizing
ECG relevance attributions

∙ Solutions and adaptations
for clinical relevance

Figure: Real World Example; Source X: Andreas
Roeschl 30.06.24
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Challenges and Solutions in Visualization
∙ Challenges:

∙ Ensuring clinical relevance of visualizations
∙ Normalizing relevance attributions effectively
∙ Bridging the gap between AI models and

cardiologists

∙ Solutions:

∙ Normalization using quartiles for robust relevance
scaling

∙ Customizable color schemes to indicate disease
relevance

∙ Incorporating standard ECG grid to enhance
interpretability
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Importance of ECG Grid for Cardiologists

∙ ECG grid provides a standardized way to interpret ECG signals

∙ Essential for identifying patterns, anomalies, and diagnosing conditions

∙ Our function adapts this by:

∙ Setting up x and y ticks to match clinical standards
∙ Customizing grid lines for clarity
∙ Overlaying AI relevance attributions on the standard ECG grid

∙ Enhances trust and usability of AI-assisted diagnostics

July 11, 2024 Georg-August-Universität Göttingen 92



Department of Medical Informatics, University Medical Center Göttingen

Figure: Example of an XAI visualization
technique: A neural network trained to detect a
right bundle branch block (RBBB) in a standard
12-lead ECG has correctly classiĄed a healthy
patient as "no RBBB". The blue-green color
highlights negative relevances that contradict the
presence of RBBB on the leads, medically referred
to as "narrow QRS complexes". This indicates
that the decision-making process of the neural
network is focused on the same regions of the
ECG described in the medical guideline.
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Evaluating Relevance Attributions

∙ Introduction to evaluation metrics

∙ Importance of qualitative and quantitative evaluation

∙ Linking relevance to medical guidelines

∙ Example: ECG and clinical validation

∙ Tools and frameworks for evaluation
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Evaluation Metrics

∙ Qualitative vs. quantitative evaluation

∙ Common metrics: accuracy, precision, recall

∙ SpeciĄc metrics for relevance attributions

∙ Challenges in evaluation

July 11, 2024 Georg-August-Universität Göttingen 95



Department of Medical Informatics, University Medical Center Göttingen

Qualitative Evaluation

∙ Individual subject
analysis

∙ Visual inspection of
relevance maps

∙ Case studies and expert
validation Figure: Case study: 40sM presents to ER from work w atypical

CP (dull/pressure, 8/10, but worse w palpitation) radiating to
the jaw. ER sends this EKG. Source X: Robert Herman
16.06.24
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Quantitative Evaluation

∙ Analysis of relevance data

∙ Aggregating relevance across subjects

∙ Correlation with clinical outcomes

∙ Example: cohort analysis in ECG studies
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Use Cases

EEG - Sleep Stage ClassiĄcation
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Using 1-channel EEG

∙ Polysomnography contains multiple
signals, such as ECG, EOG, EEG

∙ We will focus now on the brain waves
only for sleep stage classiĄcation
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EEG examples
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How to differentiate sleep stages?

∙ SpeciĄc frequencies particularly strong

∙ Morphological features present (spindles, spikes)

Stage Spindles Alpha/Theta Delta EMG REM Slow EM height
W - +++ Spikes +++ +++ +++
N1 - + - ++ - +++
N2 +++ - + + - +
N3 ++ - +++ - - -
R - + - - +++ +++
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Sleep Stage Characteristics

Figure: EEG
characteristics of the
different sleep stagesa

aDutt et al. 2023.
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Data

∙ Sleep Heart Health Study (SHHS)1 - Ąrst visit

∙ 5, 793 polysomnography recordings

∙ C3/A2 and C4/A1 EEGs, sampled at 125 Hz

∙ Sleep stages (W, R, N1-3) were annotated manually by a central
polysomnography reading center

1Quan et al. 1997.
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Methods

∙ Adaptation and training of DRCNN2

∙ Post-hoc XAI method Integrated Gradients (IG) from CaptumAI3

∙ Visualization of XAI methods on all samples

2Howe-Patterson, Pourbabaee, and Benard 2018.
3Kokhlikyan et al. 2020.
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Jupyter Notebook
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Results

Figure: Example of 1-channel EEG segments during N2 sleep (blue). The relevances using
the Integrated Gradients method are plotted in red for the importance of the sample to the
neural network.
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Use Cases

ECG - Detection of RBBB

Hunting Bunnies
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Why do we want to use AI for ECG data?

∙ Deep neural networks show
promising results in
detecting cardiovascular
diseases using 12-lead ECGs

∙ Providing explanations is
crucial

∙ Relevance attributions of
post-hoc XAI methods can
be visualized using heatmaps
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How to Ąnd Right Bundle Branch

Block(RBBB)?

∙ Heartbeat is out of sync

∙ Particularly visible in leads
V1-V3

∙ Two distinct R-peaks, called
"bunny ears"

Figure: Characteristic ECG abnormality for the
detection of RBBB, namely RSR* pattern
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Why did we choose RBBB for this analysis?
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Data

∙ CPSC subset PhysioNet-Computing in Cardiology Challenge 20204

∙ 6, 877 ECGs

∙ 5, 020 cases without RBBB, 1, 857 cases with RBBB

∙ Denoised by Turbé et al.5 using Empirical mode decomposition for low and high
frequency artefacts

4Liu et al. 2018.
5Turbé et al. 2023a.
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Methods

∙ Pretrained CNN by Turbé et al.6

∙ 15 post-hoc XAI methods from CaptumAI7

∙ Visualization of XAI methods on all samples

6Turbé et al. 2023b.
7Kokhlikyan et al. 2020.
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What XAI Methods were used?

∙ Backpropagation based Methods:
Input × Gradient; Deconvolution; Guided Backpropagation; Integrated
Gradients; 𝐿𝑅𝑃 ; 𝐿𝑅𝑃 − 𝜖; 𝐿𝑅𝑃 − 𝛼− 1− 𝛽 − 0; 𝐿𝑅𝑃 − 𝛾; DeepLIFT

∙ Pertubation based Methods:
Occlusion; Shapley value sampling; GradientSHAP; KernelSHAP; DeepSHAP

∙ Surrogate Methods:
LIME
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Why do we want to compare XAI methods?

∙ No standard taxonomy for all explainable algorithms
∙ Performance of XAI methods depends on underlying dataset and structural

nuances of the model

July 11, 2024 Georg-August-Universität Göttingen 114



Department of Medical Informatics, University Medical Center Göttingen

Results

Figure: Average beats of leads V1-V3 (ECG ID: A6800). Relevance attributions by
Deconvolution,LRP-𝛼-1-𝛽-0, Guided Backpropagationand Integrated Gradients method
(left to right) are plotted directly onto the signal and colored to see, where in the signal
the relevant information lies, according to each method.
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Jupyter Notebook
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Conclusion

∙ Different XAI methods yield different results

∙ Difficult to decide whether the model have learned the characteristic Ťbunny
earsŤ

∙ Use multiple XAI methods to increase trust in the predictions
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Workshop Wrap Up

∙ A brief introduction to biosignals and XAI was given

∙ The importance of XAI in biosignal data was highlighted

∙ A workĆow for the implementation and visualisation of XAI in the clinical Ąeld
was presented

∙ Integration of AI and XAI into clinical practice was developed in two use cases
with corresponding Jupyter notebooks
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Figure: DALL-E
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Input × Gradient

For an input 𝑥 Input×Gradient is calculated by

r
(ℓ)
𝑖 := 𝑥𝑖 ·

𝜕𝐹

𝜕𝑥
(ℓ)
𝑖

with 𝜕𝐹 (𝑥)
𝜕𝑥𝑖

the gradient of 𝐹 (𝑥) along the i-th dimension.
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Integrated Gradients

We consider the straightline path (in 𝑛) from baseline 𝑥 ′ to input 𝑥 and compute the
gradients at all points along the path. Integrated gradients are obtained by cumulat-
ing these gradients. SpeciĄcally, integrated gradients are deĄned as the path integral
of the gradients along the straightline path from baseline 𝑥 ′ to input 𝑥 .

IG𝑖 (𝑥) := (𝑥𝑖 − 𝑥 ′𝑖 )

ˆ 1

𝛼=0

𝜕𝐹 (𝑥 ′ + 𝛼(𝑥 − 𝑥 ′))

𝜕𝑥𝑖
𝑑𝛼

with 𝜕𝐹 (𝑥)
𝜕𝑥𝑖

the gradient of 𝐹 (𝑥) along the i-th dimension.
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LRP

Let ℓ and ℓ + 1 be two consecutive layers in a neural network and 𝑥
(ℓ)
𝑖 and 𝑥

(ℓ+1)
𝑗

two neurons from layers ℓ and ℓ + 1 respectively with weighted connection 𝜔
(ℓ,ℓ+1)
𝑖 𝑗

and bias term 𝑏
(ℓ+1)
𝑗 .

The relevance attribution 𝑟
(ℓ)
𝑖 of neuron 𝑥

(ℓ)
𝑖 from layer (ℓ) is calculated as follows:

𝑟
(ℓ)
𝑖 =

∑︁

𝑗∈ℓ+1

𝑟
(ℓ+1)
𝑗

𝑥
(ℓ)
𝑖 𝜔

(ℓ,ℓ+1)
𝑖 𝑗

∑︀

𝑖∈ℓ 𝑥
(ℓ)

𝑖
𝜔
(ℓ,ℓ+1)

𝑖 𝑗
+ 𝑏

(ℓ+1)
𝑗

.
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Deconvolution

For an input 𝑥 the relevance attribution 𝑟
(ℓ)
𝑖 is calculated as follows (using the chain

rule)

𝑟
(ℓ)
𝑖 := 𝑥

(ℓ)
𝑖 ·

𝜕𝐹

𝜕𝑥
(ℓ)
𝑖

= 𝑥
(ℓ)
𝑖

∑︁

𝑗∈(ℓ+1)

𝜕𝐹

𝜕𝑥
(ℓ+1)
𝑗

𝜕𝑥
(ℓ+1)
𝑗

𝜕𝑥
(ℓ)
𝑖

,

if there is no ReLU function in layer (ℓ). For a layer (ℓ) with ReLU activation in the
forward pass, the relevance attribution is calculated as follows

𝑟
(ℓ)
𝑖 := 𝑥

(ℓ)
𝑖

∑︁

𝑗∈(ℓ+1)

𝜕𝐹

𝜕𝑥
(ℓ+1)
𝑗

ReLU
(︁

𝑟
(ℓ+1)
𝑗

)︁

,

so only positive relevances are backpropagated.

July 11, 2024 Georg-August-Universität Göttingen 125



Department of Medical Informatics, University Medical Center Göttingen

Guided Backpropagation

For an input 𝑥 the relevance attribution 𝑟
(ℓ)
𝑖 is calculated as follows (using the chain

rule [])

𝑟
(ℓ)
𝑖 := 𝑥

(ℓ)
𝑖 ·

𝜕𝐹

𝜕𝑥
(ℓ)
𝑖

= 𝑥
(ℓ)
𝑖

∑︁

𝑗∈(ℓ+1)

𝜕𝐹

𝜕𝑥
(ℓ+1)
𝑗

𝜕𝑥
(ℓ+1)
𝑗

𝜕𝑥
(ℓ)
𝑖

,

if there is no ReLU function in layer (ℓ). For a layer (ℓ) with ReLU activation in the
forward pass, the relevance attribution is calculated as follows

𝑟
(ℓ)
𝑖 := 𝑥

(ℓ)
𝑖

∑︁

𝑗∈(ℓ+1)

𝜕𝐹

𝜕𝑥
(ℓ+1)
𝑗

𝜕𝑥
(ℓ+1)
𝑗

𝜕𝑥
(ℓ)
𝑖

ReLU
(︁

𝑟
(ℓ+1)
𝑗

)︁

.

July 11, 2024 Georg-August-Universität Göttingen 126



Department of Medical Informatics, University Medical Center Göttingen

DeepLIFT

Let ℓ and ℓ + 1 be two consecutive layers in a neural network and 𝑥
(ℓ)
𝑖 and 𝑥

(ℓ+1)
𝑗

two neurons from layers ℓ and ℓ + 1 respectively with weighted connection 𝜔
(ℓ,ℓ+1)
𝑖 𝑗 .

Let 𝑥
(ℓ)
𝑖 be the activation of neuron 𝑥

(ℓ)
𝑖 for a baseline input.

The relevance attribution 𝑟
(ℓ)
𝑖 of neuron 𝑥

(ℓ)
𝑖 from layer (ℓ) is calculated as follows:

𝑟
(ℓ)
𝑖 =

∑︁

𝑗∈ℓ+1

𝑟
(ℓ+1)
𝑗

𝑥
(ℓ)
𝑖 𝜔

(ℓ,ℓ+1)
𝑖 𝑗 − 𝑥

(ℓ)
𝑖 𝜔

(ℓ,ℓ+1)
𝑖 𝑗

∑︀

𝑖∈ℓ 𝑥
(ℓ)

𝑖
𝜔
(ℓ,ℓ+1)

𝑖 𝑗
− 𝑥

(ℓ)

𝑖
𝜔
(ℓ,ℓ+1)

𝑖 𝑗

.
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Occlusion

For tabular data this method masks one feature in the input, runs a forward pass
trough the network and then computes the difference between the outputs as the
relevance attribution. For image data this can be done for each pixel individually, or
by selecting a window size that slides over the image and sets all pixels underneath
the window to zero and then calculating the difference in outputs.
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Shapley Values

Let 𝐹 be the set of all features. A prediction is a superadditive map 𝜈 : 2𝐹 → satis-
fying 𝜈(∅) = 0. Given a prediction 𝜈, the Shapley value for a feature 𝑖 is

Φ𝑖 (𝜈) =
∑︁

𝑆⊆𝐹∖{𝑖}

|𝑆|!(|𝐹 | − |𝑆| − 1)!

|𝐹 |!
(𝜈(𝑆 ∪ {𝑖})− 𝜈(𝑆)) .

July 11, 2024 Georg-August-Universität Göttingen 129



Department of Medical Informatics, University Medical Center Göttingen

LIME

Let 𝑓 :𝑑→ denote the model being explained and 𝑔 ∈ 𝐺 denote an interpretable
model, e.g. linear model, decision tree, with complexity Ω(𝑔), where 𝐺 is a class of
interpretable models. Further, let 𝜋𝑥(𝑧) be a proximity measure between an instance
𝑧 to 𝑥 , deĄning a locality around 𝑥 . ℒ(𝑓 , 𝑔 , 𝜋𝑥) denotes a Ądelity measure of how
unfaithful 𝑔 is in approximating 𝑓 in the locality deĄned by 𝜋𝑥 , e.g. mean squared
error.
The explanation produced by LIME is obtained by the following minimisation:

LIME(𝑥) = argmin𝑔∈𝐺 ℒ(𝑓 , 𝑔 , 𝜋𝑥) + Ω(𝑔)
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